Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 23(11): 1036-1044, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446358

RESUMO

BACKGROUND AIMS: In this study, the authors performed an in-house abbreviated qualification of a commercially available real-time polymerase chain reaction (PCR) kit for limit of detection (LOD), matrix interference and ruggedness of mycoplasma detection in a human bone marrow-derived mesenchymal stromal cell (MSC(M)) investigational cell product (NCT02351011). The approach used was similar to an abbreviated qualification the authors previously conducted for endpoint PCR, which was accepted by Canadian regulators for final product release of the same MSC(M) investigational cell product for treatment of osteoarthritis patients (NCT02351011). With patient consent, biobanked MSCs(M) were re-analyzed by real-time PCR for mycoplasma detection to conduct in-house qualification of the kit. METHODS: LOD was determined by spiking MSCs(M) with a series of 10-fold dilutions of two commercially available genomic DNA (gDNA) reference standards for Mycoplasma arginini (M. arginini) and Mycoplasma hominis (M. hominis). Matrix interference was tested by using 10-fold dilutions of MSC(M)s down to 4500 cells/mL. Polyadenylic acid (poly[A]) was used to improve DNA recovery in samples with 4500-45 000 MSCs(M)/mL. Real-time PCR tests performed on different days were compared to evaluate ruggedness. RESULTS: Real-time PCR analysis showed a conservative LOD of 40 genome copies (GCs)/mL and 240 GCs/mL, which are equivalent to 10 colony-forming units (CFUs)/mL, for M. arginini and M. hominis, respectively. According to a less conservative manufacturer-based criterion for positivity, the kit detected 0.4 GC/mL (0.1 CFU/mL) and 24 GCs/mL (1 CFU/mL) M. arginini and M. hominis, respectively. Real-time PCR with different MSC(M) dilutions did not show matrix interference. However, DNA recovery was compromised at MSC(M) concentrations at or below 45 000 cells/mL. The addition of poly(A) as a DNA carrier improved DNA recovery and allowed an LOD, considered here to be equivalent to 10 CFUs/mL, to be achieved, which was not possible in diluted MSC(M) samples (≤45 000 cells/mL) in the absence of poly(A). Ruggedness was demonstrated with tests (n = 18) performed on different days, with an average overall inter-assay percent coefficient of variation of less than 4 for M. arginini (3.62 [400 GCs/mL], 3.61 [40 GCs/mL]) and less than 3 for M. hominis (2.83 [2400 GCs/mL], 1.95 [240 GCs/mL]). CONCLUSIONS: A commercially available real-time PCR mycoplasma detection kit was qualified for evaluating mycoplasma contamination in investigational MSC(M) products and met the criteria used previously (and accepted by Canadian regulators) for in-house qualification of an endpoint PCR mycoplasma detection kit, and the addition of poly(A) addressed the poor recovery of mycoplasma gDNA in samples with low cell numbers.


Assuntos
Células-Tronco Mesenquimais , Mycoplasma , Canadá , Ensaios Clínicos como Assunto , Humanos , Mycoplasma/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
3.
Front Immunol ; 11: 629726, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33763056

RESUMO

Objective: Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods: Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3'-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results: PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion: PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.


Assuntos
Artrite Psoriásica/imunologia , Sinalização do Cálcio/imunologia , Macrófagos/imunologia , Receptor PAR-2/imunologia , Triptases/imunologia , Artrite Psoriásica/patologia , Feminino , Humanos , Macrófagos/patologia , Masculino
4.
Nat Commun ; 10(1): 714, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755615

RESUMO

Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR.


Assuntos
Glicemia/metabolismo , Glucose/biossíntese , Intestino Delgado/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenoviridae/genética , Animais , Dieta Hiperlipídica , Homeostase , Resistência à Insulina , Intestino Delgado/efeitos dos fármacos , Masculino , Metformina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Avicenna J Med Biotechnol ; 11(1): 88-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800248

RESUMO

BACKGROUND: Nitric Oxide (NO) which is synthesized by endothelial Nitric Oxide Synthase (eNOS) in both vascular tissues and platelets plays an important role as a protective mediator in the cardiovascular system. It modulates blood pressure, vasodilation and thrombosis. In this regard, eNOS activity and gene expression in platelets and NO levels in patients' plasmas with Coronary Thrombosis (CT) and stenosis diseases were determined. METHODS: Blood samples were collected from 60 subjects that where divided into three equal groups [without coronary artery disease, with CT and less than 70% Coronary Stenosis (CS)]. NO concentration in plasma was measured by the Griess reagent system. The eNOS activity was assessed based on a fluorimetric detection system in platelets and the gene expression was quantified by the real time-reverse transcription-polymerase chain reaction. RESULTS: There was a significant decrease in the amount of NO concentration in the plasma of subjects with CT (0.53±0.09 µM, p<0.01) and CS (1.31±0.11 µM, p<0.01) compared to the control group (2.6±0.10 µM). The activity levels of eNOS enzyme were significantly lower in patients' platelets with CT (0.68±0.013 UF/mn, p<0.01) and CS (0.85±0.017 UF/mn, p<0.01) than the control cases (1.29±0.019 UF/mn). These data were consistent with the reduction of the expression levels of eNOS in patients with CT (75 folds) and CS (4 folds) lower than the control cases. CONCLUSION: Patients with CT and CS possessed reduced eNOS activity and gene expression in their platelets. Decreased plasma concentration of NO in these patients confirmed the potential significance of the diagnostic and prognostic value of NO in the subjects' plasma with vascular disease risk.

6.
Eur Addict Res ; 24(6): 304-311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517913

RESUMO

BACKGROUND: Epigenetic mechanisms such as histone modifications may be involved in the structural and behavioral changes associated with addiction. We studied whether morphine-induced changes in mRNA levels of the catecholamine biosynthesis enzyme, tyrosine hydroxylase (TH), are associated with histone modifications around the promoter of this gene in the locus coeruleus (LC) and ventral tegmental area (VTA) of rats. METHODS: Dependence was induced in rats by intraperitoneal injections of morphine for 11 days. The animals were killed 2 h (chronic morphine), 24 h and 7 days (spontaneous withdrawal) after the last injection of morphine. RESULTS: Analysis of our real-time quantitative reverse transcription PCR results by 1-way ANOVA showed significant upregulation (5.13 ± 0.39 folds) of LC levels of the TH transcript 24 h after the last injection of morphine to rats, when compared with 2 h and 7 days time points. Chronic morphine and morphine abstinence failed to cause any significant changes in the levels of TH mRNA in the VTA after cessation of morphine. Consistently, chromatin immunoprecipitation real-time quantitative PCR assays revealed that 24 h after the last injection of morphine, levels of H3 acetylation were significantly increased (4.12 ± 0.38 folds) at the promoter of the TH gene in the LC but not in the VTA. Our data also showed that histone H3 trimethylation failed to change around the TH gene promoter either in the VTA or in the LC after morphine abstinence. CONCLUSIONS: Results of the present study, for the first time, demonstrate the involvement of histone H3 acetylation in the regulation of TH gene expression in the LC of rats during forced abstinence from morphine.


Assuntos
Histonas/metabolismo , Locus Cerúleo/metabolismo , Síndrome de Abstinência a Substâncias/genética , Tirosina 3-Mono-Oxigenase/genética , Área Tegmentar Ventral/metabolismo , Acetilação , Animais , Masculino , Morfina/efeitos adversos , Dependência de Morfina/genética , Regiões Promotoras Genéticas , Ratos , Síndrome de Abstinência a Substâncias/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese
7.
Cell Metab ; 27(3): 572-587.e6, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514066

RESUMO

Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Glucose/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Lactobacillus gasseri/metabolismo , Animais , Dieta Hiperlipídica/métodos , Emulsões/metabolismo , Transplante de Microbiota Fecal/métodos , Homeostase , Ácido Linoleico/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Fosfolipídeos/metabolismo , Ratos Sprague-Dawley , Óleo de Soja/metabolismo
8.
J Biol Chem ; 293(11): 4159-4166, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29374061

RESUMO

The responsiveness of glucose sensing per se to regulate whole-body glucose homeostasis is dependent on the ability of a rise in glucose to lower hepatic glucose production and increase peripheral glucose uptake in vivo In both rodents and humans, glucose sensing is lost in diabetes and obesity, but the site(s) of impairment remains elusive. Here, we first report that short-term high-fat feeding disrupts hypothalamic glucose sensing to lower glucose production in rats. Second, leptin administration into the hypothalamus of high-fat-fed rats restored hypothalamic glucose sensing to lower glucose production during a pancreatic (basal insulin)-euglycemic clamp and increased whole-body glucose tolerance during an intravenous glucose tolerance test. Finally, both chemical inhibition of hypothalamic lactate dehydrogenase (LDH) (achieved via hypothalamic LDH inhibitor oxamate infusion) and molecular knockdown of LDHA (achieved via hypothalamic lentiviral LDHA shRNA injection) negated the ability of hypothalamic leptin infusion to enhance glucose sensing to lower glucose production in high fat-fed rats. In summary, our findings illustrate that leptin enhances LDHA-dependent glucose sensing in the hypothalamus to lower glucose production in high-fat-fed rodents in vivo.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Hipotálamo/enzimologia , L-Lactato Desidrogenase/metabolismo , Leptina/farmacologia , Animais , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Teste de Tolerância a Glucose , Homeostase , Resistência à Insulina , Masculino , Ratos , Ratos Sprague-Dawley
9.
Cell Rep ; 18(10): 2301-2309, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273447

RESUMO

Mitochondria undergo dynamic changes to maintain function in eukaryotic cells. Insulin action in parallel regulates glucose homeostasis, but whether specific changes in mitochondrial dynamics alter insulin action and glucose homeostasis remains elusive. Here, we report that high-fat feeding in rodents incurred adaptive dynamic changes in mitochondria through an increase in mitochondrial fission in parallel to an activation of dynamin-related protein 1 (Drp1) in the dorsal vagal complex (DVC) of the brain. Direct inhibition of Drp1 negated high-fat-feeding-induced mitochondrial fission, endoplasmic reticulum (ER) stress, and insulin resistance in the DVC and subsequently restored hepatic glucose production regulation. Conversely, molecular activation of DVC Drp1 in healthy rodents was sufficient to induce DVC mitochondrial fission, ER stress, and insulin resistance. Together, these data illustrate that Drp1-dependent mitochondrial fission changes in the DVC regulate insulin action and suggest that targeting the Drp1-mitochondrial-dependent pathway in the brain may have therapeutic potential in insulin resistance.


Assuntos
Encéfalo/metabolismo , Dinaminas/metabolismo , Insulina/metabolismo , Dinâmica Mitocondrial , Animais , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ratos Sprague-Dawley
10.
J Microbiol Immunol Infect ; 49(2): 249-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25081983

RESUMO

BACKGROUND/PURPOSE: Tuberculous granulomas are the sites of interaction between the T cells, macrophages, and extracellular matrix (ECM) to control the infection caused by Mycobacterium tuberculosis (M. tuberculosis). A predominant role of RD-1-encoded secretory proteins, early secreted antigenic target-6 (ESAT-6), and culture filtrate protein-10 (CFP-10) in the formation of granulomas has recently been emphasized. However, the precise molecular events that induce the formation of these granulomatous structures are yet to be elucidated. Macrophages use integrins to adhere to fibronectin (FN) as a major component of the ECM. The major goal of this study was to investigate whether recombinant M. tuberculosis antigens can modulate integrin-mediated macrophage adhesion. METHODS: Differentiated THP-1 cell line was stimulated with recombinant ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins and evaluated for alterations in the expression levels of α5ß1 and α4ß1 by semiquantitative real-time polymerase chain reaction. The role of these recombinant antigens in the cytoskeleton rearrangement was determined by adhesion assay and immunofluorescent microscopy. RESULTS: Our data showed that ESAT-6 and ESAT-6/CFP-10 fusion proteins could induce adhesion of macrophages to FN through α4ß1 integrin. An increased expression level of α4ß1 integrin in comparison with α5ß1 integrin in differentiated THP-1 cells was also observed. Results of immunofluorescence studies showed that recombinant proteins-treated THP-1 cells form well-organized stress fibers and focal contacts containing vinculin compared with untreated THP-1 cells. CONCLUSION: Increased expression level of α4ß1 in differentiated THP-1 cells could suggest the important role of α4ß1 integrin in adhesion and focal contact formation of macrophages exposed to M. tuberculosis antigens.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fibronectinas/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Mycobacterium tuberculosis/fisiologia , Receptores de Fibronectina/análise , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Integrina alfa4beta1/análise , Integrina alfa4beta1/genética , Integrina alfa5beta1/análise , Integrina alfa5beta1/genética , Mycobacterium tuberculosis/genética , Ligação Proteica , Receptores de Fibronectina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Avicenna J Med Biotechnol ; 7(2): 76-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26140185

RESUMO

BACKGROUND: Tumour suppressor genes such as TP53, BRCA1 and RAD51 are involved in DNA repair and their malfunctions result in genomic instability and cancer. Wild type (WT) TP53 binds to BRCA1and RAD51 in vivo and in vitro. However, mutated TP53 in tumours can interfere with WT TP53 function. We studied how mutation of TP53 in MDA-MB-468 cell line could affect its binding capacity and interfere with WT TP53 interaction with these DNA repair proteins. METHODS: Binding capacity of mutated TP53 in MDA-MB-468 breast cancer cell line to BRCA1 and RAD51 proteins in comparison to WT TP53 in MCF7 cell line was studied by Immunoprecipitation. In vitro studies were performed by GST-WT p53 pull-down assays in these cell lines to assess the interaction of GST-WT p53 with BRCA1 and RAD51 proteins. RESULTS: The results showed that mutated TP53 in MDA-MB-468 cells interacted with BRCA1 protein in vivo and did not effect WT TP53 binding to this protein in vitro. The Immunoprecipitation assays revealed that the mutated TP53 did not bind to RAD51 in comparison to WT TP53. However, this mutated protein could not interfere with binding of RAD51 to GST-WT p53 in MDA-MB-468 cell line by in vitro experiment. CONCLUSION: It was found that WT TP53 interactions with BRCA1 and RAD51 did not interfere with mutated TP53 in MDA-MB-468 cell line. In addition, RAD51 did not bind to TP53 with R273C mutation in vivo.

12.
Asian Pac J Cancer Prev ; 16(9): 3723-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25987028

RESUMO

The p53 tumor suppressor protein is a principal mediator of growth arrest, senescence, and apoptosis in response to a broad array of cellular damage. p53 is a substrate for the ubiquitin-proteasome system, however, the ubiquitin-conjugating enzymes (E2s) involved in p53 ubiquitination have not been well studied. UBE2Q1 is a novel E2 ubiquitin conjugating enzyme gene. Here, we investigated the effect of UBE2Q1 overexpression on the level of p53 in the MDA-MB-468 breast cancer cell line as well as the interaction between UBE2Q1 and p53. By using a lipofection method, the p53 mutated breast cancer cell line, MDA-MB-468, was transfected with the vector pCMV6-AN-GFP, containing UBE2Q1 ORF. Western blot analysis was employed to verify the overexpression of UBE2Q1 in MDA-MB-468 cells and to evaluate the expression level of p53 before and after cell transfection. Immunoprecipitation and GST pull-down protocols were used to investigate the binding of UBE2Q1 to p53. We established MDA-MB-468 cells that transiently expressed a GFP fusion proteins containing UBE2Q1 (GFP-UBE2Q1). Western blot analysis revealed that levels of p53 were markedly lower in UBE2Q1 transfected MDA-MB-468 cells as compared with control MDA-MB-468 cells. Both in vivo and in vitro data showed that UBE2Q1 co-precipitated with p53 protein. Our data for the first time showed that overexpression of UBE2Q1can lead to the repression of p53 in MDA-MB-468 cells. This repression of p53 may be due to its UBE2Q1 mediated ubiquitination and subsequent proteasome degradation, a process that may involve direct interaction of UBE2Q1with p53.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Western Blotting , Feminino , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Mutação/genética , Domínios e Motivos de Interação entre Proteínas , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
13.
Avicenna J Med Biotechnol ; 6(4): 228-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25414785

RESUMO

BACKGROUND: Genes for human epidermal growth factor receptors B1 (ErbB1) and B2 (ErbB2) were amplified in breast and ovarian cancers. Both of them were associated with aggressive disease and worse prognosis. The ErbB1 or ErbB2 status of a tumor may provide an indication of the response to ErbB1 and ErbB2 -targeted therapies. For accurate and rapid assessment of amplification of ErbB1 and ErbB2 oncogenes, a High Performance Liquid Chromatography (HPLC) method was developed in this study. METHODS: DNA was extracted from 30 primary breast tumors and 20 blood samples of healthy donors. ErbB1 and ErbB2 genes along with a reference gene were co-amplificated by Polymerase Chain Reaction (PCR). The PCR products were separated and quantified using an anion-exchange column within 30 min and in a single step. Optimum resolution was obtained when a sodium chloride gradient and a column temperature of 35°C were used. The results of HPLC analysis of ErbB1 and ErbB2 PCR products were compared with real time PCR method as a gold standard test for 7 tumor samples. RESULTS: The proposed HPLC method was confirmed by real time PCR method. Twenty two and ten of the specimens in our breast cancer cohort showed more than a two-fold amplification of ErbB2 and ErbB1 oncogenes, respectively. CONCLUSION: Our results were confirmed by real time PCR and showed that HPLC method is a specific, cheap and clinically applicable analytical approach for assessment of ErbB1 and ErbB2 statuses in breast tumors.

14.
Iran J Med Sci ; 39(3): 268-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24850984

RESUMO

BACKGROUND: DNA methyltransferase-3B (DNMT3B) is an important enzyme responsible for maintaining the DNA methylation pattern in eukaryotic cells. In this study we have investigated the correlation between the 46359C→T polymorphism in the DNMT3B gene and the risk of breast cancer incidence among sporadic breast cancer patients in Fars Province, Southern Iran. METHODS: In this case-control study, 100 breast cancer patients and 138 healthy control subjects were genotyped for the DNMT3B gene by the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS: The genotype frequency in the case (CC 27%, CT 47%, TT 26%) group significantly (P=0.008) differed from the control (CC 19.56%, CT 67.3%, TT 13%) group. We observed a decreased association between the CT genotype and lymph node involvement in breast cancer patients. Our results have shown that in comparison to the homozygous CC genotype carriers the DNMT3B-CT genotype has a significantly lower risk for breast cancer (OR=0.515, 95% CI=0.267-0.994, P=0.048). CONCLUSION: Our case-control study showed that the CT genotype was significantly associated with decreased breast cancer risk. Consistent with these results, a significant decrease of CT genotype among lymph node positive breast cancer patients was observed. However, a larger study population with more clinical data is needed to confirm these results.

15.
J Reprod Infertil ; 14(2): 56-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23926565

RESUMO

BACKGROUND: Extracted sperm from the testis have poor motility. Moreover, their motility changes during their journey through epidydimis. Meanwhile, they face high concentration of L-carnitin. In addition, lactate dehydrogenase C4 (LDH-C4) gene disorders has been shown to cause impaired sperm motility, leading to infertility in male mice. The aim of this study was to evaluate sperm motility and LDH-C4 enzyme activity upon L-carnitine (LC) and Pentoxifylline (PTX) administrations in mice. METHODS: We extracted testicular sperm of 48 mice and divided them into three equal parts. One part was incubated with Ham's F10 medium (control), the other parts were treated with Ham's F10 containing LC and PTX with a final concentration of 1.76 mM, for 30 min at room temperature. Sperm motility was assessed according to the World Health Organization (WHO) criteria. Sperm LDH-C4 enzyme activity was measured by spectrophotometery method. Statistical analyses were performed using ANOVA and Fisher's LSD test, and a p-value less than 0.05 was considered as a statistically significant difference. RESULTS: Sperm motility increased after 30 min of incubation in LC- and PTX-treated group (p<0.001). LC and PTX administrations showed a significant increase in the LDHC4 enzyme activity of sperm compared to that of the controls after 30 min (P=0.04 and 0.01, respectively). CONCLUSION: The effects of LC and PTX on motility of sperm can be explained by an increase in LDH-C4 enzyme activity that may influence male fertility status. We suggest that LC as a non-toxic antioxidant is more suitable for use in assisted reproductive technique protocols than PTX.

16.
Mol Biol Rep ; 40(3): 2617-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242655

RESUMO

DNA methylation and histone deacetylation are two epigenetic mechanisms involved in the lack of estrogen receptor (ER) expression. Our previous studies demonstrated that mutant p53 along with repression complex proteins including DNMT1, HDAC1 and MeCP2 is associated with ER-negative promoter in MDA-MB-468 cells. To elucidate the molecular mechanism of estrogen receptor 1 (ESR1) gene silencing in these cells, we down-regulated DNMT1 and HDAC1 expression using siRNAs and studied the ability of DNMT1, HDAC1, MeCP2 and p53 in binding to ESR1 promoter CpG island. Our results showed that DNMT1 or HDAC1 down-regulation disassembled the repression complex proteins and mutant p53 from ER-negative promoter. The partial demethylation of ESR1 promoter and ER re-expression in down-regulated cells supports these findings. In vivo binding studies demonstrated that mutation of p53 protein in this cell line did not affect its binding capacity to DNMT1, HDAC1 and MeCP2 proteins. Our observations suggest that not only histone deacetylase activity of HDAC1 contributes to inactivation of methylated ESR1 gene but also HDAC1 presence on ESR1 promoter is important for assembly of DNMT1 in repression complex. In addition, our data revealed that mutant p53 protein binds to the promoter of ESR1 through direct interaction with HDAC1 and indirect interaction with DNMT1, MeCP2 proteins in the ER-negative MDA-MB-468 cells.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Receptor alfa de Estrogênio/genética , Histona Desacetilase 1/metabolismo , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Células MCF-7 , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Ligação Proteica , Interferência de RNA , Proteína Supressora de Tumor p53/genética
17.
Iran J Med Sci ; 37(3): 187-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23115451

RESUMO

BACKGROUND: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. METHODS: To identify the best condition, the cells were firstly electroporated without siRNA and cell viability was determined by trypan blue and MTT assays. Then siRNA transfection in the best condition was performed. Western blot analysis was used for monitoring successful siRNA transfection. RESULTS: The best condition for electroporation of this cell line was 220 volt and 975 µF in exponential decay using the Gene Pulser X cell electroporation system. Our data demonstrated that by using proper electroporation condition, DNA methyl transferase mRNA was silenced by 10 nmol DNMT1 siRNA in MDA-MB 468 cells when compared with negative control siRNA electroporation. Analysis of cell viability demonstrated that optimal electroporation condition resulted in 74% and 78% cell viability by trypan blue staining and MTT assay, respectively. CONCLUSION: Transfection of the MDA-MB-468 breast cancer cell line with siRNA in the obtained electroporation condition was successful and resulted in effective gene silencing and high cellular viability.

18.
Neurochem Res ; 37(7): 1517-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22410736

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a role in mediating molecular, cellular, and behavioral adaptations underlying drug addiction. Here, we examined the influence of withdrawal from repeated morphine treatment on the expression of BDNF mRNA in the ventral tegmental area (VTA) and locus coeruleus (LC) of the rat brain. We also studied whether alternations in mRNA levels of BDNF in these tissues are associated with histone modifications around promoters II and III of the BDNF gene. Thus, chromatin immunoprecipitation (CHIP) and quantitative (q)-PCR were employed to assess acetylation of histone H3 at K9/K14 and trimethylation of histone H3 at K9. Results of qRT-PCR showed that levels of BDNF mRNA in both VTA and LC were significantly increased 7 days rather than 2 h or 24 h following the last injection of morphine. Consistently, CHIP and qPCR analysis revealed that on day 7 of morphine abstinence, both VTA and LC levels of histone methylation at BDNF promoters II and III of morphine treated rats were significantly lower than control animals. Morphine withdrawal caused only a significant increase in H3 acetylation at the promoter II in the LC. These data demonstrate the involvement of histone H3 methylation in the regulation of gene expression in the VTA and LC of rats during forced abstinence of morphine.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Histonas/metabolismo , Locus Cerúleo/metabolismo , Morfina/administração & dosagem , Regiões Promotoras Genéticas , Síndrome de Abstinência a Substâncias , Área Tegmentar Ventral/metabolismo , Animais , Primers do DNA , Masculino , Morfina/efeitos adversos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
19.
Mol Biol Rep ; 39(5): 6171-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22207181

RESUMO

The WNT signaling is deregulated in most human colorectal cancers (CRC). Promoter methylation has been proposed as an alternative mechanism to inactivate genes in tumors. To gain insight into the methylation silencing of the WNT pathway during colorectal carcinogenesis, we examined the aberrant methylation profile of four genes, APC, Axin1, Axin2, and GSK3ß in an unselected series of 112 sporadic colorectal tumors by methylation specific PCR. It has been suggested that the Axin2 C148T SNP is associated with the risk of developing certain types of cancers. To assess the contribution of Axin2 SNP to CRC susceptibility, we examined the Axin2 C148T genotype in CRC patients and 170 healthy controls by PCR-RFLP. The frequency of CRCs with at least one gene methylated was 18.75%. Promoter methylation of Axin2 and APC genes was detected in 7.1 and 11.9% of tumors, respectively. No aberrant methylation was found in Gsk3ß and Axin1 gene in these tumor series. The methylation status of APC had no significant association with clinical parameters. But, promoter methylation of Axin2 was sex-related, occurring more frequently in females (P = 0.002). The frequency of Axin2 C148T genotypes were similar in patients and controls. Moreover, we observed no association between the Axin2 SNP and risk of CRC in patients stratified by age, sex, and smoking status. However, the heterozygote CT genotype was associated with a reduced CRC risk in distal patients compared with proximal patients (OR = 0.3; 95% CI 0.1-0.9, P = 0.04). Our findings indicate that Axin1 and GSK3ß methylation play a minor role in colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais/genética , Epigênese Genética , Predisposição Genética para Doença , Via de Sinalização Wnt/genética , Idoso , Estudos de Casos e Controles , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Feminino , Frequência do Gene/genética , Genes Neoplásicos/genética , Estudos de Associação Genética , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas
20.
Pathol Oncol Res ; 18(2): 169-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21655924

RESUMO

p53 is a tumor suppressor protein that regulates estrogen receptor 1 (ESR1) expression. To investigate the mechanism of ESR1 gene regulation by p53, chromatin immunoprecipitation was applied to assess the binding of p53, DNMT1, HDAC1 and MeCP2 to both silenced ESR1 promoter in MDA-MB-468 cells and active ESR1 promoter in MCF-7 breast cancer cells. The results of chromatin immunoprecipitation experiments showed that p53 protein binds to both unmethylated CpG island of the ESR1 promoter in the ER-positive MCF-7 and the hypermethylated ESR1 promoter in the ER-negative MDA-MB-468 cells. However, repression complex including DNMT1, HDAC1 and MeCP2 is only associated with silenced ESR1 in ER-negative MDA-MB-468 human breast cancer cells. In addition, ectopically expressed wild type p53 failed to reactivate the ESR1 gene in these cells. These results suggest that specific p53 mutations may contribute to loss of estrogen receptor α expression in breast tumors and also support the hypothesis that mutant p53 is likely to impact DNA methylation.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Neoplasias da Mama/patologia , Imunoprecipitação da Cromatina , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...